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High-gradient, pressurized RF cavities are investigated as a means to improve the performance of low-frequency

phase-rotation schemes for neutrino factories and muon colliders. We consider placing high-gradient, low-

frequency, pressured RF cavities close to the pion production target to facilitate early phase rotation and capture

of the pion-muon beam. We also consider the transverse cooling effects that the high-pressure gas has on the

beam.

1. INTRODUCTION

Conventional sources for intense muon beams
involve pion production from proton interactions
within a target. The resulting muon beams re-
quire phase rotation to achieve the desired flux
of muons into the momentum acceptance of re-
alistic downstream devices, such as an ionization
cooling channel [1].

The current techniques for phase rotation [2,3]
are limited by the applicable gradient of the RF
cavities. High-pressure, gas-filled RF cavities
may provide a possible means of overcoming these
limits [4], which then may make low-frequency,
high-gradient phase rotation possible. The gas
may even act as an absorber for ionization cool-
ing. We explore the possibility of designing a
low-frequency phase rotation scheme using high-
pressure, gas-filled RF cavities.

∗Work supported in part by DOE STTR/SBIR grant DE-
FG02-03ER83722.

2. PION PRODUCTION & CAPTURE

The initial beam has been generated using
MARS [5]. We simulated a 1 MW, 25 GeV, 1
ns proton pulse incident on a carbon rod target.
The target is 80 cm long and 1.5 cm in diame-
ter, tilted at an angle of 100 mrad with respect
to the central axis of the channel in order to re-
duce pion recapture in the target. Aligned with
the central axis of the channel is a 20 T capture
solenoid spanning the length of the target. A ta-
pered solenoid follows to adiabatically reduce the
field to 5 T over 15 m, simultaneously increasing
the aperture from 15 cm to 30 cm. Such a tar-
get region, and the pion beam produced in such
a region, has been discussed in great detail in the
first and second Neutrino Factory feasibility stud-
ies [1,6].

3. PHASE ROTATION & COOLING

The lattice following the taper consists of 10-
cm long solenoids spaced by 15 cm gaps. The
mean field is approximately uniform at 5 T. Gas-
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filled, 100 atm RF cavities with 10-cm long ac-
tive lengths are placed in the gaps. The first
80 cavities (20 m) are 25 MHz, 25 MV/m, zero
synchronous phase cavities meant to phase ro-
tate the beam. The next 120 cavities (30 m)
are 400 MHz, 30 MV/m, 6.3◦ synchronous phase
cavities meant to adiabatically capture the beam
into higher frequency. This lattice was simulated
in G4Beamline, a beamline simulation program
based on the GEANT4 Toolkit [7].

We attempt to achieve a beam that can be in-
jected into a helical cooling channel (HCC) with
an aperture of 30 cm and momentum acceptance
of ±25%, similar to those simulated by Muons,
Inc. [8,9]. Thus, we examine the ability of the
20 m phase rotation channel to rotate positively
charged pions and muons into the 250-420 MeV/c
momentum band acceptance of the HCC.

Figure 1 shows the transmission of positively
charged muons in the 250-420 MeV/c accept-
able momentum band at various distances down-
stream from the 15 m tapered solenoid. For com-
parison, we show the transmission for the same
beam in a normal decay channel without gas-filled
RF (only 5 T solenoids). The muon yield of 0.24
µ

+ / proton-on-target (POT) is similar to that
found in recent neutrino factory studies [10] as-
suming a similar carbon target.

The transverse emittance of the positive muons
has been calculated down the 80 m channel using
ECALC9, a tool developed for muon ionization
cooling simulations and a part of the ICOOL sim-
ulation package [11]. At the end of the channel,
the transverse emittance with (without) the gas-
filled RF is 13.6 mm-rad (16.5 mm-rad), demon-
strating an 18% cooling effect in the transverse
plane when gas-filled RF is used.

REFERENCES

1. T. Anderson et al, N. Holtkamp and D. Fin-
ley (eds.), A Feasibility Study of a Neutrino
Source based on a Muon Storage Ring, SLAC-
REPRINT-2000-054 (2000).

2. R. Fernow, MUC-NOTE-302 (2004).
http://www-mucool.fnal.gov/notes/

3. D. Neuffer, MUC-NOTE-269 (2003).
4. R. E Hartline et al, MUC-NOTE-285 (2004).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 20  30  40  50  60  70  80

T
ra

ns
m

is
si

on
 [

µ+
/ P

O
T

]

Distance from Target [m]

Decay Only
Phase Rotation

Figure 1. Transmission of positive muons in the
250-420 MeV/c momentum range from 15 m to 80
m downstream from the target. The blue curve
shows the transmission with phase rotation and
matching into 400 MHz RF. The red curve shows
the transmission of a similar beam without RF.

5. N.V. Mokhov, ”The Mars Code System
User’s Guide”, Fermilab-FN-628 (1995); O.E.
Krivosheev, N.V. Mokhov, ”MARS Code Sta-
tus”, Proc. Monte Carlo 2000 Conf., p. 943,
Lisbon, October 23-26, 2000; Fermilab-Conf-
00/181 (2000); N.V. Mokhov, ”Status of
MARS Code”, Fermilab-Conf-03/053 (2003);
N.V. Mokhov, K.K. Gudima, C.C. James et
al, ”Recent Enhancements to the MARS15
Code”, Fermilab-Conf-04/053 (2004).
http://www-ap.fnal.gov/MARS/

6. S. Ozaki, R. Palmer, M. Zisman, and J. Gal-
lardo (eds.), Feasibility Study-II of a Muon-
Based Neutrino Source, BNL-52623 (2001).

7. T. Roberts, G4Beamline.
http://www.muonsinc.com/

8. Y. S. Derbenev and R. P. Johnson, MUC-
NOTE-284 (2004).

9. K. Yonehara et al., Simulations of a Gas-
Filled Helical Muon Beam Cooling Channel,
submitted to PAC05 proceedings.

10. J.C. Gallardo et al, MUC-NOTE-316 (2005).
11. R. Fernow, MUC-NOTE-280 (2003).

K. Paul et al. / Nuclear Physics B (Proc. Suppl.) 155 (2006) 273–274274


