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We present results for ground and excited-state nucleon masses in quenched lattice QCD using anisotropic

lattices. Group theoretical constructions of local and nonlocal straight-link irreducible operators are used to obtain

suitable sources and sinks. Matrices of correlation functions are diagonalized to determine the eigenvectors. Both

chi-square fitting and Bayesian inference with an entropic prior are used to extract masses from the correlation

functions in a given channel. We observe clear separation of the excited state masses from the ground state mass.

States of spin ≥ 5/2 have been isolated by use of G2 operators.

1. INTRODUCTION

Reproducing the spectrum of baryon reso-
nances with spin-1/2 and spin-3/2 and both pari-
ties is an important test of lattice QCD. For that
we require three-quark operators that transform
irreducibly under the spinorial rotation group of
the lattice [1]. Local and nonlocal straight-link
operators corresponding to irreducible represen-
tations (IRs) G1g,u, Hg,u and G2g,u are con-
structed to obtain suitable sources and sinks [2].
Here we analyze N⋆ spectra using these opera-
tors.

To determine the N⋆ excited states, a matrix of
correlation functions is computed in the quenched
approximation to QCD using irreducible baryon
interpolating operators Bi(~x, t) of definite quan-
tum numbers,

Cij(t) =
∑

~x

〈0|T
(

Bi(~x, t)Bj(~0, 0)
)

|0〉. (1)
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The Cij(t) matrices for G1 and H states for
each parity are constructed using local operators,
smeared local operators and smeared straight-link
operators. For G2, we have one operator which is
of smeared straight-link type (Tables 1, 3 in [2]).

The computation of masses of the lowest-lying
resonances is based on the variational method ap-
plied to the matrix of correlation functions. In
this paper we solve the generalized eigenvalue
equation,

Cij(t)V
(α)
j (t) = λ(α)(t, t0)Cij(t0)V

(α)
j (t) (2)

and determine eigenvectors V (α)(t) for each t,
with t0 close to the source time. Then the masses
of N⋆ states correspond to the eigenvalues of

Eq. (2): λ(α)(t, t0)−−−→t≫t0 e
−m(α)(t−t0) [3]. The ef-

fective masses are determined from

m
(α)
eff = ln

[

λ(α)(t, t0)

λ(α)(t+ 1, t0)

]

−−−→
t≫t0 m(α). (3)

Another way to extract spectrum information
is to calculate the spectral mass density ρ(ω) from
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Figure 1. G1g effective masses for a selected few
low-lying states.

lattice correlation functions using the Maximum
Entropy Method (MEM) [4],

C(t, t0) −→

∫

dω ρ(ω)e−ω(t−t0). (4)

One of the advantages of MEM is that it utilizes
data on a wide range of available time slices and
has been shown to yield results even for noisy
data [4]. This feature may be helpful in extracting
masses of excited states.

2. RESULTS

We use an ensemble of 287 quenched,
anisotropic 163 × 64 lattices with renormalized
anisotropy ξ = 3.0 and β = 6.1, corresponding to
a−1

t = 6.0 GeV [5]. We use the anisotropic Wil-
son action. The parameters of the Wilson fermion
action are tuned nonperturbatively so as to sat-
isfy the continuum dispersion relation E(p)2 =
E(0)2 + c(p)2p2 at a pion mass mπ ≃ 500 MeV.
To improve the coupling of operators to the lower
mass states we employ gauge-covariant smear-
ing of the quark fields on both source and sink:
ψ̃(x) = (1 + σ2∆̃(Ũ)/4N)Nψ(x), where ∆̃(Ũ) is
the three dimensional Laplacian and Ũ denotes
APE-smeared SU(3) link variables. The param-
eters used to smear the quark fields are σ = 3.6
and N = 32.

The effective masses are calculated from 10×10
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Figure 2. Lowest positive parity effective masses
for the IRs G1g, Hg and G2g.

G1g matrices with t0 = 2. In Fig. 1 we choose to
show a few low-lying states that are clearly sep-
arated. However, the details of the states above
the ground state are under study. The plot shows
a good plateau for the ground state and statisti-
cally significant splittings for a couple of excited
states.

In Figs. 2 and 3 we have collected the effective
mass plots of the lowest states of both parities
for G1, G2 and H . The ratio of lowest masses
for G1g and G1u is roughly in accordance with
experiment, for spin-1/2 states, the G1u mass be-
ing higher. The effective masses for Hg,u are ob-
tained using a 7 × 7 matrices of correlation func-
tions. The lowest negative parity Hu state has
smaller mass than the lowest positive parity Hg

state. This is compatible with the pattern found
in nature for spin-3/2. However, the masses of
Hu and G1u overlap within errors. Our result for
G2 masses also reveals reasonable separations of
the G2g and G2u masses, G2g being lower. From
Fig. 2, it is evident that the effective mass for
Hg (allowed spin 3/2+, 5/2+, · · ·) is very similar
to that for G2g (allowed spin 5/2+, 7/2+, · · ·).
These states are orthogonal. One possibility for
this is that the lowest Hg state has spin-3/2+ and
its mass is accidentally close to that of the lowest
G2g state. Another possibility is that the low-
est Hg state is spin-5/2+, in which case the same



3

5 10 15 20
Time

0.1

0.2

0.3

0.4

0.5

E
ff

ec
tiv

e 
M

as
s

G1u
G2u
Hu

Figure 3. Lowest negative parity effective masses
for the IRs G1u, Hu and G2u.

state must be present in Hg and G2g, but not in
G1g. Study over different values of lattice spacing
is required to decide.

Finally, we present theG2g MEM spectral func-
tion in Figure 4. We find that the peak of the
spectral density roughly corresponds to the effec-
tive mass value.

In Table 1 we summarize our preliminary esti-
mates of the lowest masses for the different repre-
sentations extracted from single-exponential fits
to the λ(α)(t, t0) of Eqn. 1. The effective masses
for the lowest states of G1, H and G2 for both
parities, whether obtained from the variational
method or preliminary MEM analysis, show a

Table 1
Numerical estimates from single-exponential fit to
λ(α)(t, t0) corresponding to the lowest masses of
N⋆ spectra.

IRs Fit range meff ∼ Mass (MeV)

G1g 9 – 20 0.208 (4) 1250

G1u 8 – 12 0.321 (4) 1930

Hg 9 – 12 0.410 (2) 2460

Hu 6 – 15 0.315 (4) 1890

G2g 9 – 14 0.409 (7) 2450

G2u 8 – 15 0.475 (7) 2850

Figure 4. Example of a spectral density function
from a MEM analysis of G2g correlation func-
tions.

spectrum of distinct N⋆ masses. However, the
behavior of the spectrum with mπ and the sensi-
tivity of the spectrum to variations in the lattice
volume has yet to be studied.
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