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Abstract

This paper describes the Monte Carlo simulation developed specifically for the Virtual Compton Scattering (VCS) experiments below

pion threshold that have been performed at MAMI and JLab. This simulation generates events according to the (Bethe–Heitler + Born)

cross-section behaviour and takes into account all relevant resolution-deteriorating effects. It determines the ‘‘effective’’ solid angle for

the various experimental settings which are used for the precise determination of the photon electroproduction absolute cross-section.

r 2006 Elsevier B.V. All rights reserved.

PACS: 13.60.Fz; 14.20.Dh
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1. Introduction

Virtual Compton Scattering (VCS) off the nucleon N is a
valuable reaction to study the structure of the nucleon.
VCS refers to the reaction g� þN ! gþN 0, where g� and
g represent a virtual and a real photon, respectively. It can
be seen as an extension of Real Compton Scattering (RCS)
to photon virtuality Q2a0. In this case six electromagnetic
observables, called Generalised Polarizabilities (GPs), enter

the cross-section and may be determined to gain valuable
insight into the structure of the scatterer. In the real-
photon limit, Q2 ¼ 0, two of the six independent GPs are
proportional to the well-known polarizabilities a and b
obtained from RCS. The concept of GPs has first been
worked out by Arenhövel et al. [1] for nuclei and later by
Guichon et al. [2] for the nucleon.
VCS off the proton is studied using the pðe; e0p0Þg

reaction: an electron scatters off a proton and a real
photon is produced. The scattered electron and the
recoiling proton are detected in coincidence, each in a
high-resolution magnetic spectrometer, and real-photon
production events are identified by reconstruction of the
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missing mass, which is zero in this reaction. The real
photon can be produced either by the incoming or by the
outgoing electron (the Bethe–Heitler contribution to the
reaction) or by the nucleon. The nucleon contribution
contains the Born part and the non-Born part. The sum of
the Bethe–Heitler and the Born contributions will be
denoted by BH+B. The non-Born part contains the GPs,
which are accessible through the deviation of the measured
pðe; e0p0Þg cross-section from the BH+B cross-section, the
latter being perfectly calculable once the elastic form
factors of the proton are known.

The very first dedicated VCS experiment below pion
threshold to obtain information on the GPs took place at
the Mainz Microtron MAMI (Mainz, Germany) at Q2 ¼

0:33 ðGeV=cÞ2 [3]. For the kinematics of this experiment the
contribution of the GPs to the cross-section had been
estimated to amount to 10% [3]. This means that the
absolute cross-section had to be measured very precisely.
In addition, one needed very elaborated analysis methods.
The present paper is devoted to the description of the
latter, which have been developed further and adapted to
analyse also the next VCS experiment, performed at the
Thomas Jefferson National Accelerator Laboratory JLab
(Newport News, USA) at Q2 values of 0.9 and 1:8 ðGeV=cÞ2

[4]. Both experiments are unpolarised and they are very
similar, in apparatus as well as in method. Most numerical
examples given in this paper refer to the MAMI experi-
ment.

The Monte Carlo code simulates pðe; e0p0Þg events
comparable to those of the experiments. The simulation
generates realistic spectra in the physical variables of
interest and it has been used to determine with great
accuracy what we will call effective solid angle. This
effective solid angle is defined such that it does not only
represent the geometrical acceptance, but it also includes
the convolution of many effects. The aim of the present
paper is to explain how the cross-section behaviour and the
various resolution-deteriorating processes taking place in
the target and in the detection systems have been taken into
account. In addition the calculation of the simulated
luminosity is explained. Throughout the paper the cross-

section used in the simulation will be often called ‘‘VCS
cross-section’’ for simplicity.
The paper is organised as follows: in Section 2 the

kinematics of the reaction, a description of the experiment
and the definition of the effective solid angle are discussed.
In Section 3 we outline the method used to implement the
cross-section behaviour and we define the phase space in
which the events are generated. Section 4 is devoted to a
detailed description of the implementation of the radiative
effects. Section 5 discusses the simulation package. Section
6 covers the determination of the simulated luminosity and
Section 7 the calculation of the effective solid angle.
Results are presented in Section 8. Finally, Section 9 is a
brief summary of the paper.

2. Introductory definitions

2.1. The kinematics of the reaction and the experimental

realization

In the process pðe; e0p0Þg an incoming electron with
momentum ~k scatters off a proton by exchange of a virtual
photon g� with momentum ~q and a real photon with
momentum ~q0 is emitted. The vector ~k and the momentum
vector of the outgoing electron, ~k0, define the scattering
plane. The momentum vector of the recoiling proton, ~p0,
and ~q0 define the reaction plane. The vector ~q, which is
determined as ~k � ~k0, lies in both planes. The direction of
the real photon in the CM-system of g� and p is determined
by the angle between the two photons, ygg;cm, and the angle
j between the scattering and the reaction plane as is shown
in Fig. 1 (throughout this paper all variables in the centre
of mass have an index cm; if no index is given the variable
is defined in the laboratory system). j is defined equal to 0�

when ~q0 lies in the scattering plane and points to the same
side of ~q as ~k0. In the CM-system, g and p0 move back to
back. In the laboratory system the recoiling proton is
boosted in a (narrow) cone around ~q, while the undetected
g can have any direction. This very welcome feature of the
VCS kinematics makes it possible to cover a large range in
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ygg;cm by detecting the proton within the moderate solid
angle of a high-resolution spectrometer.

In the experiment a monochromatic electron beam
impinges on liquid hydrogen, contained in a metal can of
known geometry. Its temperature and pressure are
constantly monitored. To prevent local overheating of
the liquid (which would cause density fluctuations and as
such luminosity errors), the beam position on the target is
continuously moving using a ‘‘raster’’ system. The scat-
tered electron and the recoil proton are both detected in
magnetic spectrometers, the entrance collimators defining
their angular acceptances. The electron spectrometer
defines the virtual-photon acceptance. For each electron-
spectrometer setting, several proton-spectrometer settings
are used to cover the interesting part of the proton cone. As
both spectrometers usually rotate in the horizontal plane,
one measures essentially around j ¼ 0� and 180�; only at
sufficiently high momentum transfer and low real-photon
energy the full proton cone is covered by the acceptance of
the proton spectrometer.

2.2. The solid-angle definition

For an ideal experiment (free of resolution effects) the
cross-section is determined from the number of counts
detected in a given phase space bin, Nexp, and the
integrated luminosity, Lexp, via

Nexp

Lexp
¼

Z
ds
dO

dO ¼

R
ðds=dOÞdOR

dO

Z
dO ¼

ds
dO

� �
� DO1

(1)

where ds=dO is a notation for the differential cross-section
and dO represents an infinitesimal bin in the phase space
under study. It is clear that in order to derive precise
differential cross-sections from the measured data, the solid
angle of the detection apparatus has to be accurately
known. Using Eq. (1) one determines the cross-section
averaged over the solid angle DO1, the latter one being a
purely geometrical quantity. When the cross-section has a
curvature, ascribing the average cross-section to the mean
kinematics results in a bias. One can solve this bias by
ascribing the measurement to an appropriate different
kinematics (cf. [5]). This is, however, unpractical in our
case because the cross-section depends on five kinematical
variables (see Section 3). In this case one can stick to the
central kinematics (or choose any other kinematics in the
bin) and apply an appropriate correction to the average
cross-section in order to get an unbiased result. We choose
to include this correction factor in the solid angle by
defining another solid angle DO2

Nexp

Lexp
¼

ds
dO

� �
0

Z
1þ

ds=dO� ðds=dOÞ0
ðds=dOÞ0

� �
dO

¼
ds
dO

� �
0

� ðDO1 þ oÞ ¼
ds
dO

� �
0

� DO2 ð2Þ

where ðds=dOÞ0 is the cross-section at the chosen point.
The solid angle DO2 deviates from DO1 by the amount o,
which depends on the curvature of the cross-section over
the bin and the chosen point in the bin. To obtain DO2 one
must know with sufficient accuracy the cross-section
behaviour of the process under study in the phase space
region under consideration. In principle, this must be the
cross-section which one is going to measure and which is
therefore unknown at the moment of the simulation. A
sufficiently good approximation, however, is the BH+B
cross-section, since it is expected to deviate by less than
10% from the complete pðe; e0p0Þg cross-section; in parti-
cular its curvature, which is the decisive feature in this
context, should be a very good approximation to the real
one.
The solid angles DO1 or DO2 must incorporate not only

the actual detection geometry but also the various
resolution effects. This is why these solid angles are called
‘‘effective’’ and why they can only be calculated by a
Monte Carlo simulation.
The present simulation is used to calculate DO2 of the

experimental setups used in VCS experiments and, at the
same time, to compare experimental and simulated data on
an absolute scale. To this end, one introduces a simulated
luminosity, Lsim, equivalent to the experimental one. This
simulated luminosity is defined by

Lsim ¼
N 0sim

DO0hds=dOi
ð3Þ

where hds=dOi stands for the differential cross-section in
the simulation averaged over a well-known solid angle,
DO0, and N 0sim is the number of events generated in DO0.
Once the quantity Lsim is known, one calculates the
effective solid angle DO (which can be DO1 or DO2), in full
parallellism with Eqs. (1) and (2) using

DO ¼
Nsim

Lsim ðds=dOÞ
ð4Þ

where ds=dO is the cross-section used in the simulation and
Nsim the number of events in DO. Sections 3–6 describe
how the various terms of this equation are obtained.

3. Cross-section behaviour and phase space definition

3.1. The implementation of the cross-section behaviour

As mentioned above, the calculation of DO2 needs as
input the cross-section behaviour. The BH+B cross-
section, d5s=dk0 dOe0 dOgg;cm, depends on the variables
(k; k0; ye0 ; ygg;cm;j), where k, k0; . . . are the moduli of the
corresponding three-vectors. Instead of k; k0 and ye0 one
can also use qcm; q

0
cm and the photon polarisation, e, which

ensures that, in the cross-section grid used by the
simulation, only the real physical space is covered. An
example of how the cross-section behaves as a function of
ygg;cm and j for fixed qcm, q0cm and e for the MAMI
kinematics is shown in Fig. 2. It is symmetric with respect
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to the scattering plane, and therefore only a ‘‘half-sphere’’
is shown. One clearly observes the two peaks correspond-
ing to real photon emission around the incoming and
outgoing electron directions. Over the complete angular
range the cross-section varies by orders of magnitude, but
in the phase space of interest (which is away from the peak
region), the cross-section flattens substantially. This allows
one to choose a reasonable upper limit, or envelope value,
for the cross-section sampling, which cuts through the
peaks.

The number of events in an infinitesimal phase space bin
is given by

dNbin ¼L
d5s

dk0 dOe0 dOgg;cm
dk0 d cosðye0 Þ

�dje0 d cosðygg;cmÞdj ð5Þ

where je0 is the angle between the scattering plane and the
horizontal plane containing the axis of the spectrometers.
To generate counts in the phase space according to Eq. (5)
one uses the acceptance–rejection method [6] in five
dimensions with a constant as envelope for the cross-
section. However, the theoretical code [7] used to calculate
the BH+B cross-section is too slow to be used on an event-
by-event basis in the simulation. To solve this problem, the
theoretical code has been used to calculate the BH+B
cross-section at the nodes of a five-dimensional grid in the
variables ðqcm; q

0
cm; e; ygg;cm;jÞ. Then, in the simulation, the

cross-section value is obtained by interpolating in this grid,
which makes the calculation faster by a factor of about
1000. In practice, a logarithmic interpolation is performed,
reaching an accuracy of better than 1%.

3.2. The phase space definition

The events have to be generated according to the five-
fold differential BH+B cross-section in a phase-space
volume Dk0 � DOe0 � DOgg;cm. For an efficient simulation,
one wants to optimise this phase space. While being not too
large, it must cover the full acceptance of the apparatus,
taking into account all resolution effects. The following
ranges in the above mentioned variables are used:

� DOe0 ¼ D cosðye0 Þ � Dje0 : the maximum and minimum
values of ye0 and je0 are determined taking into account
the shape of the extended target, the position of the
spectrometer and the shape of its entrance collimator
and multiple scattering effects.
� Dk0: the lower bound is given by the lower limit of the

momentum acceptance of the electron spectrometer.
The upper bound is given by the maximum momentum
of elastically scattered electrons in the DOe0 bin defined
above. This upper bound is fixed independently of the
position of the elastic line relative to the electron
spectrometer’s momentum acceptance, since an electron,
scattered with a momentum larger than the maximum
accepted momentum, can still be detected due to energy
losses before the spectrometer’s entrance.
� DOgg;cm: the outgoing photon can go in any direction in

the CM-system, therefore events are generated in the full
solid angle 4p. As a result, the outgoing proton is also
sampled in its full angular phase space, i.e. the full
proton cone in the laboratory. This ensures that all
detectable events are indeed taken into account, even
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Fig. 2. The five-fold differential cross-section for the pðe; e0p0Þg reaction as

a function of ygg;cm and j (qcm ¼ 600MeV=c, q0cm ¼ 45MeV=c and

e ¼ 0:62).
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with resolution-smearing at the target. Another advan-
tage is that the simulation can be run for several proton-
spectrometer settings all at once. For each generated
proton, the simulation performs a loop over the various
proton-spectrometer settings and tests if the particle is
accepted or not.

The five-fold differential cross-section depends on the
incoming electron momentum at the interaction point, k,
but it is not differential in this variable. However, although
the beam is monochromatic (at the 10�4 level), k is not a
constant. Each incoming electron loses energy in the target
by collisions and by external bremsstrahlung in the
material before the vertex point and by internal brems-
strahlung at the vertex point itself (see Section 4.1). The
resulting distribution of k at the interaction point is
depicted on Fig. 3 for an incoming electron momentum
of 766.4MeV/c and a hydrogen target of 340mg=cm2.

4. The radiation tail

4.1. The necessity to simulate a radiative tail

The radiative tail is a well-known feature of electron
scattering experiments: after correction for the energy
losses by collisions, the energy spectrum of the scattered
electron shows a peak at the kinematically expected value,
but this peak is accompanied by a radiation tail to lower
energies [8]. This tail is due to energy loss of the incoming
and outgoing electron via ionisation, external bremsstrah-
lung in the materials of the target and up to the
spectrometer’s entrances and via internal real radiation in
the scattering process itself. These effects are of course also
present in VCS experiments and give rise to the radiative
tail observed in the spectrum of the missing mass squared
M2

X , defined as ðkþ p� k0 � p0Þ2 (bold characters repre-
sent the four-vector of the particles). The resulting tail is
shown in Fig. 4.

For the calculation of the effective solid angles, one
needs a recipe to generate in the Monte Carlo simulation
the radiation tail as observed. Indeed, experimentally one
applies a cut in the M2

X spectrum around 0 to select real-
photon production events, and the same cut must be
applied to the simulated events. The simulation reproduces
the radiative tail well, which is very important because one
wants the final cross-section result to be independent of the
cut in M2

X . In fact, the influence of the position of the cut in
the missing mass squared on the resulting cross-section was
lower than 1% in the MAMI case. By reproducing the
radiation tail in the simulation, the part of the radiative
corrections which changes the kinematics of the reaction is
taken into account, and the simulated radiative tail is
properly convoluted with the detector acceptance (these
points will be discussed below). The other part of the
radiative corrections is applied as a constant factor to the
calculated cross-section.
Internal and external real radiation are incorporated in

the simulation. These processes are simulated by sampling
in an energy-loss distribution for the incoming and
outgoing electron. In the simulation only the electron’s
energy is changed, while its direction is assumed to be
unaffected by the radiation effects (angular peaking
approximation). For ionisation not only energy losses are
taken into account for the electron and proton, but also
multiple scattering is incorporated in the simulation. The
used probability distributions are discussed in the following
sections.

4.2. Ionisation and multiple scattering

Collisions of the particles in the materials of the target
are simulated by applying an energy loss and a scattering
angle. The program glando of the CERN-libraries [9] is
used to generate a realistic energy-loss distribution based
on the mean value of the energy loss, which is calculated
using the Bethe–Bloch equation. The deflection caused by
multiple scattering is treated as explained in Ref. [10].
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4.3. External radiative effects

An electron passing through a slice of material of
thickness t (in units of radiation length) emits photons due
to bremsstrahlung. The energy loss of the electron, DE, is
equal to the sum of the energies of all produced photons.
The distribution of DE is given in very good approximation
by [11] ðto0:05Þ

I extðE0;DE; tÞ ¼
bt

1� 0:5772bt

DE

E0

� �bt

�
1

DE
1�

DE

E0
þ

3

4

DE

E0

� �2
 !" #

. ð6Þ

E0 is the kinetic energy of the electron before bremsstrah-
lung and b ¼ 4

3
.

To generate the energy loss of the electron, one samples
an energy loss according to the distribution (6) using the
acceptance–rejection method, using 1=DE as an envelope.
To avoid variable overflows in the code for very small DE,
the introduction of a lower limit, DEll, is necessary. In the
present simulation DEll ¼ 1 keV (which is well below the
resolution of the experiment). Finally the electron energy is
decreased by the obtained value for DE.

In the simulation of the bremsstrahlung, only the energy
of the electron is changed, which is equivalent with photon
emission along the electron-momentum direction. This is a
good approximation, since bremsstrahlung is very for-
wardly peaked. The smaller DE, the better this approxima-
tion. Moreover, the scattering angle due to bremsstrahlung
is small compared to that from multiple scattering.

4.4. Internal radiative effects

4.4.1. Virtual and real internal corrections

The cross-section for the pðe; e0p0Þg reaction, sth, i.e. a
process involving only one virtual photon and one real
photon, cannot be measured directly, since in reality the
pure pðe; e0p0Þg process is always accompanied by addi-
tional photons, either real or virtual. These internal
radiative effects give rise to a measured cross-section,
sexp, which deviates from sth

sexp ¼ ð1þ dtotÞsth. (7)

The correction term dtot is negative and depends on the cut
in the radiative tail accompanying the scattering process.
The internal radiative corrections to VCS are discussed in
great detail in Ref. [12]. Written in first order, one gets

dð1Þtot ¼ dvac þ dver þ drad (8)

dvac accounts for vacuum polarisation diagrams, dver is the
vertex correction and drad is the correction for radiation in
the one additional photon approximation. One can
approximately take into account higher order radiative

corrections by writing [12]

sexp ¼
edverþdrad

ð1� dvac=2Þ
2
sth. (9)

For Q2
bm2, one can write

drad �
a
p

ln
ðDEc

cmÞ
2

EcmE0cm

� �
ln

Q2

m2

� �
� 1

� �
�

1

2
ln2

Ecm

E0cm

� ��

þ
1

2
ln2

Q2

m2

� �
�

p2

3
þ Sp cos2

ye0;cm

2

� ��
ð10Þ

dver �
a
p
�
3

2
ln

Q2

m2

� �
� 2�

1

2
ln2

Q2

m2

� �
þ

p2

6

� �
(11)

dvac �
2a
3p
�
5

3
þ ln

Q2

m2

� �� �
(12)

where Ecm (E0cm) is the incoming (outgoing) electron
(kinetic) energy at the reaction vertex, a is the fine-
structure constant and m is the electron mass. Sp is the
Spence function, e.g. [12]. The virtual correction terms dver
and dvac are independent of the cut in the radiative tail,
DEc

cm, and nearly constant for the phase space of interest.
The correction for these effects will be applied by a
constant correction factor to the measured cross-section.
Since only the first term of drad is dependent on DEc

cm, this
term is related to the radiative tail. The other terms of drad
are independent of the cut position and they can be
considered to be constant over the phase space of interest.
Therefore they will be treated in the same way as dver and
dvac.
The radiative tail appears in the spectrum of the missing

mass squared M2
X . The cut position should be expressed in

terms of M2
X since in the experiment one cuts in M2

X to
identify photon-production events. The relation between
DEc

cm and M2
X is given by [12]

DEc
cm ¼

ffiffiffiffiffiffiffiffiffi
M2

X

q
2

. (13)

Given the relationship (13) one could apply the correction
(9) to obtain sth, without including the internal radiative
effects in the simulation. This procedure would only be
valid if the acceptance of the detectors would not cut in
some parts of the phase space more severely in M2

X than
the cut on the missing mass itself. This, however, is not the
case in the experiments. Therefore, the simulation must
generate the full radiative tail by implementing electron
energy losses by radiation, reproducing in this way realistic
spectra.

4.4.2. Generating a radiative tail due to internal real

radiation

The first factor of the correction factor edrad is the
product of a number of factors, of which the first one can
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be written as

ðDEc
cmÞ

2

EcmE0cm

� �a

¼
DEc

cm

Ecm

� �a DEc
cm

E0cm

� �a

(14)

where a ¼ a=p½lnðQ2=m2Þ � 1�. Assuming angular peaking,
we can write [12]

DEc
cm

Ecm

� �a DEc
cm

E0cm

� �a

¼
DEe

Ee

� �a DE 0e
E0e

� �a

. (15)

Following [12] we interpret the factors ðDEe=EeÞ
a and

ðDE0e=E0eÞ
a as the fraction of incoming and outgoing

electrons, respectively, which have lost less than DEe or
DE0e due to internal real radiation. To sample each of these
energy losses DE one uses the distribution, I intðE;DE; aÞ,
such thatZ DE

0

I intðE;DE; aÞdðDEÞ ¼
DE

E

� �a

. (16)

Integration yields

I intðE;DE; aÞ ¼
a

DE

DE

E

� �a

(17)

which is normalised to 1. Remark the similarity between
I intðE;DE; aÞ and the leading term of I extðE;DE; tÞ (Eq. (6)).
bt has been replaced by the quantity a, which is well-known
in literature as equivalent radiator [13], i.e. an imaginary
radiator placed before and after the scattering centre to
generate internal real radiation.

The recipe used to introduce the radiation tail due to
internal radiation in the Monte Carlo simulation is

(1) Sample an energy loss, DEe, according to the distribu-
tion (17) with E ¼ incoming electron energy Ee.

(2) Generate the kinematics of a pðe; e0p0Þg event at the
vertex (see Fig. 1) for the reduced energy Ee � DEe of
the incoming electron. The events are sampled accord-
ing to the cross-section at this reduced energy. After the
scattering process the outgoing electron has an energy
E0e at the vertex.

(3) Sample an energy loss, DE0e, according to the distribu-
tion (17) with E ¼ E0e. The outgoing electron energy is
now E0e � DE 0e.

Remark that the above procedure implies electron-energy
losses both at the incoming and the outgoing electron sides,
which is fully consistent with the exponentiation idea.
Again, for numerical reasons, one has to introduce a DEll-
value to sample in the I int distribution. In practice the
sampling is done uniformly in the integrated distribution of
I int, then solving analytically for DE. To calculate the
equivalent-radiator thickness a, one needs the value of Q2

for the event, which one can only calculate after the
complete process has taken place. However, due to the
slow variation of lnðQ2=m2Þ, one gets a very good
approximation by using the value of Q2 given by elastic

electron–proton scattering at the nominal beam momen-
tum ki and scattering angle ye.

5. The simulation package

The simulation consists of three separate programs:
vcssim, resolution and analysis. The first one,
vcssim, generates pðe; e0p0Þg events in the target, applying
ionisation energy losses and multiple scattering to all
charged particles and radiative effects to the electrons. The
outgoing electron and proton are tracked up to the
entrance of the spectrometers, where the collimator-
acceptance cut is applied. This program produces two
output files: one contains the generated events and the
other one contains statistical information. The second
program, resolution, applies the resolution effects of
the spectrometers on the events generated by vcssim,
producing a datafile with the events affected by the
spectrometer resolution. The third program, analysis,
analyses the output datafile from resolution in the
same way experimental data are analysed and produces a
third datafile. The latter contains a set of reconstructed
variables to be compared to the experimental ones. The
modular structure of the package has the advantage that
one can change e.g., the spectrometer–resolution effects or
the analysis, without having to redo the first step, which is
the most time-consuming one. The three programs are
described in more detail below.

5.1. Vcssim

Using all necessary input parameters, the program first
defines the phase space in which it is going to sample (see
Section 3.2). In order to obtain an event the following steps
are taken: first the transverse beam position on the target is
generated in a horizontal and vertical distribution similar
to the experimental one. An interaction point along the
beamline is chosen uniformly inside the target length. The
incoming electron is subject to multiple scattering, energy
loss by collision and external bremsstrahlung in the target
wall and the liquid hydrogen till the reaction vertex. Then
the real internal radiation at the VCS vertex is simulated by
an additional energy loss of the incoming electron using the
equivalent-radiator approach discussed in Section 4.4.2.
Then the four-vector k of the electron inducing the actual
VCS process is obtained. The energy loss through radiation
can be so large, that k can already be too small to give any
detectable electron in the final state. At this fixed value of
k, the highest value of k0 is given by the kinematics of the
elastic process ep! e0p0. So at this point a test is made if
the momentum of the elastically scattered electron is high
enough to be accepted in the electron spectrometer. If the
test is negative, the event is terminated, and a new event is
generated starting all over again.
If the test is positive, one generates a scattered electron in

the labframe and an outgoing real photon direction in the
CM frame. The variables cos ye0 , je0 , cos ygg;cm, j and k0 are
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all sampled uniformly in their phase space. Remark that
the outgoing real photon energy is already determined by
the electron kinematics. If the generated kinematics is
physically possible, the cross-section is calculated for this
event by interpolation in the BH+B grid of Section 3.1.
With this value for the cross-section one samples a random
number between zero and the envelope value. If the value is
higher than the calculated cross-section, the event did not
pass the acceptance–rejection test and the event is
terminated.

As a next step, one has to determine whether the
scattered electron and outgoing proton enter the accep-
tances of the spectrometers. To this end, the momenta and
directions of the electron and proton have to be calculated.
Based on the variables ye0 , je0 and k0, one can immediately
calculate the four-vectors of the scattered electron and the
virtual photon. Then the momentum four-vector in the
centre of mass for the outgoing real photon can be
calculated using ygg;cm and j. The real photon is
transformed to the lab to obtain the four-vector q0. The
four-vector of the outgoing proton can now be calculated
as p0 ¼ pþ k� k0 � q0. The scattered electron is first
subject to real internal radiation energy loss. Then it loses
energy by collision and by external radiation and under-
goes multiple scattering in the various materials from the
vertex point to the entrance collimator of the spectrometer.
Similarly, the outgoing proton will undergo energy loss by
collision and multiple scattering on its way to the
collimator (bremsstrahlung is negligible for such a heavy
particle). Several options are proposed to calculate the
collisional energy loss of particles: the mean energy loss,
the most probable energy loss, or a realistic energy-loss
distribution (Landau distribution). For the calculation of
the effective solid angle this last option was chosen. The
spectrometer acceptance is defined in different ways
depending on the experiment. In the case of the MAMI
experiment the angular acceptance is defined by the
collimators at the entrance of the spectrometers, in the
case of the JLab experiment it is defined by cuts in a five-
dimensional phase space.

The output of the vcssim program is twofold: first a file
is produced containing the events accepted by both
spectrometers. One stores the kinematics at the vertex,
the coordinates of the interaction point, and the momenta
and angles of the particles at the spectrometer entrances.
Also a proton-spectrometer index is stored, since several
proton-spectrometer settings can be defined and filled
simultaneously in one simulation run. The second output
file contains the simulated luminosity Lsim (see Section 6)
and some statistical information regarding the simulation
run.

5.2. Resolution

The second program, resolution, introduces the
resolution effects of the spectrometers. In the experiment,
for each particle seen in the set of two double vertical drift

chambers (VDCs) the trajectory, measured in the focal
plane, is traced back to the target using the spectrometer
optics. This yields four independent variables at the target
(the momentum modulus, two projected angles and one
position coordinate). The accuracy obtained on these
target variables reflects the resolution of the apparatus.
The program resolution starts from the initial target
variables (delivered by vcssim) and modifies them by
adding the errors. Three options to realise this are
discussed below.
As a first option one can simply make use of Gaussian-

distributed resolution effects on each target variable
independently, ignoring error correlations. In this scheme,
the difference between the initial target variable and the
modified one is sampled in a Gaussian distribution of fixed
width.
In the experiment, the resolution effects of the VDCs will

cause correlations in the resolution effects on the recon-
structed target variables due to the spectrometer optics.
The second option reproduces these correlations. The
consistency of the drift times with a straight line is used as
estimate for the error on a track-by-track basis. In this
way, also effects from multiple scattering within the
chamber and from the used algorithm are effectively
included [14]. After adding quadratically the contribution
of multiple scattering in the spectrometer exit window, one
obtains the total error on the detector coordinates, which is
propagated through the known spectrometer optics to yield
the error on the target variables. From the experimental
data one can fill a four-dimensional histogram for each
spectrometer, where each dimension corresponds to the
error on a given target variable. In this way one keeps track
of error correlations (signs excluded) between the four
target variables. The binning is chosen with equal width on
the logarithm of the errors, which describes the distribution
very precisely around the most probable value and
sufficiently precisely in the long tails of the distribution,
extending over four orders of magnitude, relatively to the
width of the central peak. For each event the simulation
samples in the four-dimensional histogram, yielding the
width of the Gaussian error distribution on each target
variable. Then one samples for this event in the obtained
Gaussian distributions and one gets the modified target
variables. This method has been applied in the analysis of
the MAMI VCS experiment.
As a third option, one can implement the resolution

effects in the simulation directly at the detector level. In
this scheme, the accepted particle is transported to the focal
plane of the spectrometer, where two types of errors are
generated: (1) multiple scattering through the various
materials; (2) the global resolution of the drift chambers
(as deduced from experimental studies). For each particle,
two tracks are considered: one with and one without these
focal plane resolution effects. As in the second option, one
uses the full spectrometer optics to transport the tracks
back to the target. Now the quantity of interest is just the
difference between the two tracks for the same particle.
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This difference represents the resolution effects on the
target variables. Since one uses the difference between the
two tracks, one can approximate the optical transport from
target to focal plane: it does not need to be the exact
reverse of the optical transport from focal plane to target.
The method generates error correlations at the target, signs
included. Large resolution tails are introduced at the level
of the detector coordinates, e.g. by sampling in the sum of
two Gaussian distributions with very different widths for
the drift chamber resolution. This method has been applied
in the analysis of the JLab VCS experiment.

The output is a datafile containing the same variables as
the one from vcssim, but now they include also the
spectrometers’ resolution effects. This datafile is compar-
able to the experimental one.

5.3. Analysis

The third and final part of the simulation, the
analysis program, performs the full event reconstruc-
tion as in the analysis of the experimental data. From the
reconstructed target coordinates, one first calculates the
vertex point and from this the pathlengths of the particles
in target materials and the corresponding (mean colli-
sional) energy losses. The particle momenta are corrected
for these energy losses, yielding the four-vectors at the
vertex point. Then the complete reaction kinematics is
reconstructed, including the missing particle. Then one can
compare e.g. the distribution in missing mass squared M2

X

to the experimental one, as shown on Fig. 4.

6. The determination of the simulated luminosity Lsim

As it is clear from Eq. (4) one needs to know the
simulated luminosity in order to obtain the effective solid
angle. In the experiment, the luminosity, Lexp, is obtained
as the product of the number of incoming electrons and the
target thickness and is totally independent of the reaction
under study.

The simulation uses a different approach: the luminosity
in the simulation, Lsim, is calculated from the cross-section
samples of the acceptance–rejection method, i.e. from the
reaction itself. The method is most efficient and gives a very
accurate result, provided the procedure is established
carefully. One counts the number of samples, N, generated
during a simulation run in the luminosity phase space,
LPS, which is a sub-part of the total simulation phase
space (see Section 3.2). Simultaneously, the cross-section is
integrated over this luminosity phase space. According to
Eq. (3) Lsim is then simply given by

Lsim ¼
NR

LPS
ðd5s=dk0 dOe0 dOgg;cmÞdk0 dOe0 dOgg;cm

. (18)

As such, Lsim is actually calculated in a reverse way, i.e. at
the end of a simulation run, once the number of generated
events is known.

In principle one is free to define the size of the LPS.
However one will have to choose a LPS that is smaller than
the simulation phase space.
The first complication is due to the method used to

implement the cross-section behaviour. As mentioned in
Section 3.1, the acceptance–rejection method with constant
envelope is used, with a rejection level of about 90%.
However, among these rejected samples a large fraction
can be kept to calculate the value of the cross-section
integral over the LPS. One just has to make sure that the
LPS does not overlap with the regions of the simulation
phase space where the cross-section is larger than the
envelope, since the acceptance–rejection method does not
work in these regions.
The second complication is connected to the fact that the

real k distribution has a low-momentum tail and to the fact
that the cross-section depends on the value of k. If all VCS
inducing electrons would have the same momentum k, one
could immediately apply Eq. (18). This case is explained
in Section 6.1. The case of the real k distribution, for
which one cannot apply Eq. (18) directly, is discussed in
Section 6.2.

6.1. The definition of the luminosity phase space for the case

of constant k

If all interacting electrons would have the same
momentum, ki (the nominal beam momentum), the cross-
section integral of Eq. (18) would be given by

Is ¼

Z
LPS

d5s
dk0 dOe0 dOgg;cm

dk0 dOe0 dOgg;cm. (19)

One has to define the luminosity phase space as an
integration range in dOgg;cm, dOe0 and dk0: this is done
using a five-dimensional box in ðk0; ye0 ;je0 ; ygg;cm;jÞ, where
the limits on each variable are independent of the other
variables. For example, for the MAMI experiment the box
has the following dimensions:

� In DOgg;cm: ygg;cm varies from 0 to p and j varies from
about 0.8 to 5.48 rad. This region is chosen in order to
stay away from the steep cross-section rise in the region
of the BH+B peaks around j ¼ 0 (see Fig. 2).
� In DOe0 : one uses the complete solid angle in which the

electron directions are sampled.
� In Dk0: for the minimum of k0, the lower limit of the

electron spectrometer acceptance, k0min, is used. For the
maximum of the k0-integration range one has to be
careful not to cross the envelope value with the cross-
section values in the regions in DOgg;cm and in DOe0

defined above. Indeed, as k0 increases at fixed ki, one
approaches the elastic kinematics and as such the cross-
section rises. To stay far enough away from the elastic
kinematics, the maximum value of k0 for the integration
range is taken equal to k0cut ¼ ðk

0
elas;min þ k0minÞ=2. The

quantity k0elas;min is the minimum momentum an
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elastically scattered electron can have in DOe0 , for an
incoming electron momentum ki. This is illustrated in
Fig. 5.

6.2. Taking into account the realistic distribution of the

incoming momentum k

Due to energy losses the electron momentum at the
vertex point becomes distributed as shown in Fig. 3. In this
realistic case one could divide this distribution in small bins
in k and apply Eq. (18) to calculate the partial luminosity
for each bin j

Lj ¼
Nj

Is;j
(20)

where Is;j is given by expression (19) and Nj is the number
of accepted samples, both evaluated in a LPS similar to the
one of Section 6.1, where the range in k is limited to the bin
j. Then Lsim would be equal to

P
j Lj. There are two

limitations to this procedure

(1) It is not possible to use formula (20) on the whole
incoming electron momentum distribution, because the
cross-section grid does not contain cross-section
samples for the entire 0! ki incoming momentum
range. One has to cut somewhere in the k-range, hereby
defining a cut value kcut.

(2) For small values of k, the elastic line drawn on Fig. 5
lies totally below the lower bound of the electron-
momentum acceptance k0min, therefore k0cut lies below
k0min and the LPS cannot be defined as in Section 6.1 for
these electrons.

To solve these problems the cross-section integration will
be performed in a limited range of incoming electron
momentum, i.e. a bin in k for which the LPS can be defined

as in Section 6.1. This will yield a partial luminosity. The
total luminosity will then be obtained by a simple
renormalisation procedure.

6.2.1. The k-range for the cross-section integration

Quite obviously, the cross-section integration of Eq. (19)
should be performed for the incoming electron momenta
that are closest to the beam momentum ki. Therefore, one
defines a range of the type ½kcut; ki�. The LPS is then defined
as in Section 6.1. The value of k0cut is calculated using the
elastic line at the lowest incoming momentum of the bin,
i.e. at k ¼ kcut.
Of course, when one lowers the value of kcut, one reduces

the size of the LPS (due to the choice of k0cut), and the
statistical error on the luminosity increases. So one should
keep kcut close enough to ki. For example for the MAMI
experiment the range [ki � 3MeV=c; ki] was chosen. It
contains about 80% of all incoming electrons, and yields a
statistical error on Lsim well below 1%.
During execution the number of samples in the LPS,

NLPS, is counted and the integral over the cross-section in
the LPS, Is, is calculated. NLPS is the number of samples
accepted by the acceptance–rejection method of Section
3.1. At the end of execution, the partial luminosity
Lsim;3 MeV=c is given by NLPS=Is.

6.2.2. The renormalisation factor

By the method described above we know the luminosity
Lsim;3 MeV=c corresponding to a fraction, f, of all incoming
electrons, which have a momentum higher than
ki � 3MeV=c. This fraction f is easily calculated in the
simulation: one counts the total number of k-values that
have been generated, N tot, and the number of values that
have been generated above the threshold of ki � 3MeV=c,
N3 MeV=c. At the end one has f ¼ N3 MeV=c=N tot. However,
one needs to know the total luminosity Lsim according to
all incoming electrons. One can obtain the right value by
correcting for the electrons one did not count in the
calculation of Lsim;3 MeV=c. Since the luminosity is inde-
pendent of the reaction under study, the total luminosity
Lsim is obtained by dividing Lsim;3 MeV=c by f.

7. Calculation of the effective solid angle

The data in the output file from the analysis program,
in combination with simulated luminosity Lsim from the
vcssim program are used to calculate the effective solid
angle for any given bin in the phase space, applying Eq. (4)

DO ¼
Nsim

Lsimðd
5ssim=dk0dOe0dOgg;cmÞ

(21)

where d5ssim=dk0 dOe0 dOgg;cm is now the differential cross-
section for the pðe; e0p0Þg reaction, used in the simulation
and Nsim the number of counts in the bin. DO is similar as
in Eqs. (1) or (2), with now the specific dimension of
ðsr2 MeV=cÞ, as can be deduced from Eq. (21). By applying
energy losses for radiative effects in the simulation, a part
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of the radiative correction is automatically taken into
account in DO. If the cross-section is taken to be a constant
value over the complete phase space, Eq. (21) will yield
DO1. Calculating the cross-section from the data using this
DO1 yields the experimental cross-section averaged over the
bin. On the other hand, if the simulation has been
performed using the BH+B cross-section, the quantity
d5ssim=dk0 dOe0 dOgg;cm in Eq. (21) equals the BH+B cross-
section value at a given phase-space point, which can be
chosen anywhere, preferentially in the bin. This procedure
will give rise to DO2, comparable to Eq. (2). Applying this
DO2 to the measured data will result in the actual cross-
section value at a given phase-space point. In order to get a
precise result, the cross-section in the simulation must have
a behaviour very close to the true cross-section shape.

If necessary, one can even use an iteration procedure to
improve the value of DO2 by implementing in the
simulation a cross-section of the type BH+B plus a
polarizability effect. This procedure was tested for the two
experiments. In the case of MAMI, the relative change of
DO2 was smaller than 1%, hence the iterations had a
negligible effect on the physics observables (the GPs). In
the case of JLab, the relative change of DO2 was larger,
typically a few percent, translating into significant changes
of the physics observables: after the first (resp. second)
iteration, the GPs reached 	70% (resp. 90%) of their
convergence value. The full convergence was obtained after
the third iteration.

8. Results of the effective solid angle calculation

As an example, Fig. 6 shows the obtained effective solid
angles at q0cm ¼ 45MeV=c (e ¼ 0:62 and qcm ¼ 600MeV=c).
The phase space is defined by 40MeV=coq0cmo50MeV=c,
158�ojo202�. The statistical error on the effective solid
angle in the plateau region is about 1%. DO2 is the solid angle
obtained by generating the events according to the BH+B
cross-section. A simulation with a constant cross-section gives

DO1. It turns out that for this setting the difference between
DO1 and DO2 is up to the order of 10%. It is also interesting
to run the simulation without radiative effects, which results
in DO3. The right panel of Fig. 6 shows clearly that radiative
effects have to be included in the simulation, since there is no
common scaling factor between DO2 and DO3 for the
complete phase space.

9. Summary

The Monte Carlo simulation described in this paper
has been developed for the analysis of the VCS experiment
at MAMI and has been adapted afterwards for the analysis
of the VCS experiment at JLab. It has been used
to generate realistic observable spectra, which can be
compared with the measured ones, and to determine
accurately effective solid angles which also account for
the radiative processes accompanying the VCS reaction.
The use of a five-dimensional cross-section grid covering
the complete simulation phase space allows to generate
events according to the Bethe–Heitler+Born cross-section
at a very acceptable rate, using the acceptance–rejection
method with a constant envelope. External and internal
radiation of real photons are implemented in a well-
founded way by generating realistic radiative tails and
convoluting these effects with the acceptance of the
detection system.
The simulation described above is flexible. All resolution

deteriorating effects can independently be switched on or
off and it is possible to use a constant cross-section or the
BH+B cross-section to generate events. Due to the
multiple proton-spectrometer option the yield in several
proton-arm settings for one electron-spectrometer setting
can be simulated in one run, while the modularity of the
code gives the possibility to study spectrometer-resolution
effects in an efficient way. Finally, the program is general
enough to allow adaptation to many other processes,
including e.g. elastic scattering and pion electroproduction.
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Fig. 6. Effective solid angles for one of the settings of the MAMI experiment as a function of ygg;cm (j ¼ p, qcm ¼ 600MeV=c, q0cm ¼ 45MeV=c and

e ¼ 0:62). DO1 is obtained by running the simulation with a flat cross-section, for DO2 the BH+B cross-section is used. DO3 is the same quantity as DO2,

but for a simulation without radiative effects. The purely statistical errors are smaller than the size of the symbols.
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